A mixed-model moving-average approach to geostatistical modeling in stream networks.
نویسندگان
چکیده
Spatial autocorrelation is an intrinsic characteristic in freshwater stream environments where nested watersheds and flow connectivity may produce patterns that are not captured by Euclidean distance. Yet, many common autocovariance functions used in geostatistical models are statistically invalid when Euclidean distance is replaced with hydrologic distance. We use simple worked examples to illustrate a recently developed moving-average approach used to construct two types of valid autocovariance models that are based on hydrologic distances. These models were designed to represent the spatial configuration, longitudinal connectivity, discharge, and flow direction in a stream network. They also exhibit a different covariance structure than Euclidean models and represent a true difference in the way that spatial relationships are represented. Nevertheless, the multi-scale complexities of stream environments may not be fully captured using a model based on one covariance structure. We advocate using a variance component approach, which allows a mixture of autocovariance models (Euclidean and stream models) to be incorporated into a single geostatistical model. As an example, we fit and compare "mixed models," based on multiple covariance structures, for a biological indicator. The mixed model proves to be a flexible approach because many sources of information can be incorporated into a single model.
منابع مشابه
Appendix A: Calculating covariance matrices using the tail-up and tail-down models
A mixed-model moving-average approach to geostatistical modeling in stream networks. Ecology 91:644–651. A distance matrix that contains the hydrologic distance between any two sites in a study area is needed to fit a geostatistical model using the tail-up and tail-down autocovariance functions. However, the hydrologic distance information needed to model the covariance between flow-connected a...
متن کاملA Switchgrass-based Bioethanol Supply Chain Network Design Model under Auto-Regressive Moving Average Demand
Switchgrass is known as one of the best second-generation lignocellulosic biomasses for bioethanol production. Designing efficient switchgrass-based bioethanol supply chain (SBSC) is an essential requirement for commercializing the bioethanol production from switchgrass. This paper presents a mixed integer linear programming (MILP) model to design SBSC in which bioethanol demand is under auto-r...
متن کاملAN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملSSN: An R Package for Spatial Statistical Modeling on Stream Networks
The SSN package for R provides a set of functions for modeling stream network data. The package can import geographic information systems data or simulate new data as a ‘SpatialStreamNetwork’, a new object class that builds on the spatial sp classes. Functions are provided that fit spatial linear models (SLMs) for the ‘SpatialStreamNetwork’ object. The covariance matrix of the SLMs use distance...
متن کاملAppendix B: Additional details for the analysis of the PONSE data set
A mixed-model moving-average approach to geostatistical modeling in stream networks. Ecology 91:644–651. South East Queensland (SEQ) is located on the eastern coast of Australia and is approximately 22,999 square km in size. It is a subtropical region with mean annual maximum temperatures ranging between 21 and 29 °C (EHMP, 2001) and total annual rainfall ranges between 900 and 1800 mm (Pusey e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecology
دوره 91 3 شماره
صفحات -
تاریخ انتشار 2010